

#### From Battery Powered to Inductive Powered: The Wireless Mouse as a Design Example

Nobby Stevens Faculty of Engineering Technology ESAT, KU Leuven, Belgium



#### Content

- Principle wireless inductive power
- Illustration: An inductive wireless powered mouse
  - $\circ$  Goal
  - Possible configurations
  - o Setup
  - $\circ$  Coil design
  - Hardware overview
    - Total system
    - Power receiver
    - Power transmitter
  - Communication
  - Measurement results
- Conclusions

## **Principle inductive WPT**

- Lenz law: A time-varying magnetic field leads to an induced voltage.
- Principle used in:
  - Transformers
  - Generators (e.g., dynamo cycling, power plants)
  - Electrical motors
  - Inductive charging of stand-alone electronic devices

## **Current commercial usage WPT**

- Static receiver
- Non-flexible positioning
- E.g., Qi integrated in Ikea lamp<sup>1</sup>:



**KU LEUVEN** 

## Reference configuration: Wireless Mouse

- Wireless mouse:
  - Device is moving constantly
  - Large working area
- Remove the battery's from a moving device
- Power the device inductively







## **Possible configurations**

- Without battery constant power supply is required
  Results in a defined working area
- Several possibilities
  - A single coil around the working area
  - A coil matrix covering the whole area
  - A single smaller coil with an energy buffer

# Single transmitter coil

- Large transmitter coil around the entire area
- Advantages
  - Always magnetic field present
  - Easy to design
  - Simple driver circuitry
- Disadvantages
  - $_{\circ}$  Low efficiency due to low coupling factor
  - Increased magnetic field on the entire work area

KUI

## **Coil matrix**

- A matrix of small overlapping coils: Only one or a couple of coils in the transmitter array is active (detection mechanism)
- Advantages
  - Good efficiency due to the increased coupling
  - Device always in the presence of a magnetic field
  - Foreign object detection
- Disadvantages
  - Complex driver circuitry -> location of the receiver
  - Expensive coil structure

# Smaller coil with energy buffer

- Small coil inside the working area
  - The device moves -> regularly coupled with the transmitter
- Disadvantages
  - Because of the "dead zones" energy buffering is required -> more driver complexity and dedicated communication protocol

#### Advantages

- Efficiency is high due to the high coupling and high power transfer during passage
- Only increased magnetic field with good coupling







# **Energy buffer**

- Supercapacitor or rechargeable battery
- Advantages supercapacitor
  - Charges quickly and efficiently
  - Many reload cycles possible



Disadvantage: Lower energy density (less important due to the regular recharge)

## **Coil design**

• Maximal efficiency is function of product coupling and quality factors.

$$\eta_{link,max} = \frac{k^2 Q_{T_x} Q_{R_x}}{\left(1 + \sqrt{1 + k^2 Q_{T_x} Q_{R_x}}\right)^2}$$

• Chosen frequency: 120 kHz.

## **Receiver coil**

- Boundary condition: Volume of 2 AA-batteries
- Implementation:
  - $\circ$  Litz wire
  - Ferrite core
    - Increases Q
    - Increases coupling factor
  - Ferrite copper shielding



Ferrite copper shield

## **Transmitter coil**

- "Pancake coil": Reduce the total thickness in order to facilitate furniture integration
- Litz wire
- Ferrite copper shielding



### **Total system**





## **Total system**



#### **KU LEUVEN**

#### **Power receiver**



**KU LEUVEN** 

#### **Power receiver**





## **Power transmitter**



#### **Power transmitter**





## **Start-up of the device**



Receiver powers up
 Receiver asks high power
 Buffer activated

Driver into high power

Charging buffer

Receiver MCU powered down

Receiver MCU restarts Receiver sends buffer status Charging until buffer full

## **Measurement results**

- Average power consumption wireless mouse: 10 mW
- Goal: 15 minutes autonomy
- Maximum wireless power transfer: 4.2 W
- Capacity of the supercap: 1.65 F 5 V



- 18 minutes of working time
- Less than 1 % of the time over the transmitter guarantees correct functionality

## Conclusion

- Working, realistic reference configuration for moving receivers over a larger working area:
  - Energy buffering
  - Dedicated communication protocol
  - Low duty cycle: Short loading time and high autonomy (1 %)
- Multiple transmitters can be combined to increase working area

## **Publications**

- Conference paper: "Design of an Inductively Coupled Wireless Power System for Moving Receivers," *Wireless Power Transfer Conference (WPTC), 2014 IEEE*, pp.48-51, 8-9 May 2014 by Thoen, B.; Wielandt, S.; De Baere, J.; Goemaere, J.-P.; De Strycker, L.; Stevens, N.
- Journal paper: "Development of a Communication Scheme for Wireless Power Applications With Moving Receivers," *Microwave Theory and Techniques, IEEE Transactions on*, vol.63, no.3, pp.857,863, March 2015 by Thoen, B.; Stevens, N.



